Технология живописных материалов. Черный цвет поглощает свет, белый цвет его отражает Какие лучи поглощает синий цвет

Волна цвета — определяет спектр, видимый глазу, который отражается от предметов, тем самым задавая ему цвет. Именно эта физическая величина количественно улавливается глазом и преображается в цветовые ощущения.

Физика цвета изучает природу явления: расщепление света на спектры и их значения; отражение волн от предметов и их свойства.

Как такового цвета в природе не существует. Он продукт умственной переработки информации, которая поступает через глаз в виде световой волны.

Человек может отличить до 100 000 оттенков: волны от 400 до 700 миллимикрон. Вне различимых спектрах лежат инфракрасный (с длинной волны более 700 н/м) и ультрафиолет (меньше 400 н/м).
В 1676 г И. Ньютон провел эксперимент по расщеплению светового луча с помощью призмы. В результате он получил 7 явно различимых цветов спектра.

Спектр часто сокращают до , от которых можно построить все остальные оттенки.
Волны имеют не только длину, но и частоту колебаний. Эти величины взаимосвязаны, поэтому задать определенную спектр можно либо длиной, либо частотой колебаний.
Получив непрерывный спектр, Ньютон пропустил его через собирающую линзу и получил белый свет. Тем самым доказав:

1 Белый — состоит из всех цветов.
2 Для цветовых волн действует принцип сложения
3 Отсутствие света ведет к отсутствию цвета.
4 Черный – это полное отсутствие оттенков.
В ходе экспериментов было выяснено, что сами предметы цвета не имеют. Освещенные светом, они отражают часть световых волн, а часть поглощают, в зависимости от своих физических свойств. Отраженные световые волны и будут цветом предмета.
(Например, если на синюю кружку посветить светом, пропущенным через красный фильтр, то мы увидим, что кружка черная, потому что синий спектр блокируются красным фильтром, а кружка может отражать только синий)
Получается, что ценность краски в ее физических свойствах, но если вы решите смешать синий, желтый и красный (потому что остальные тона можно получить из комбинации основных цветов, то получите не белый (как если бы вы смешали волны), а неопределенно темный тон, так как в данном случае действует принцип вычитания.
Принцип вычитания говорит: любое смешивание ведет к отражению волны с меньшей длиной.
Если смешать желтый и красный, то получится оранжевый, длина которого меньше длины красного. При смешивании красного, желтого и синего получается неопределенно темный оттенок – отражение, стремящееся к минимальной воспринимаемой волне.
Этим свойством объясняется маркость белого. Белый – отражение всех цветовых спектров, нанесение любого вещества ведет к уменьшению отражения, и цвет становится не чисто белым.

Почему предметы, освещенные белым светом, мы видим окрашенными в разные цвета: например, листья зеленый, а роза красная?

Вы уже знаете, что белый свет является составным, то есть является смесью всех цветов радуги. Если изъять из этого набора некоторые цвета, то оставленная часть спектра будет восприниматься глазом как такая, что имеет некоторый цвет.

Пусть белое (например, солнечный) свет падает на предмет, который поглощает красные лучи, а все остальные - отражает (рис. 23.3). Какого же цвета будет свет, отраженный от этого предмета?

В нем не хватает красной части спектра, и поэтому он будет восприниматься глазом как зеленоватый.

Зеленого цвета листьям растений придает хлорофилл - химическое соединение, которое «отвечает» за фотосинтез (преобразование солнечной энергии в химическую энергию органических веществ).

Хлорофилл поглощает преимущественно красные и синие лучи. В результате отраженный от листа растения «остаток» солнечного спектра приобретает зеленую окраску.

А вот лепестки красной розы, наоборот, очень «охотно» отражают именно «красные» лучи, а лучи остальной части спектра поглощают (рис. 23.4). Именно поэтому роза и красная!

КАК ВОЗНИКАЕТ РАДУГА?

Когда после дождя появляется солнце, часто можно наблюдать одно из красивейших явлений природы - радугу (рис. 23.5).

В огромной разноцветной дуге, простирающейся на полнеба, можно различить все цвета радуги, причем внешняя часть радуги окрашена в красный цвет, а внутренняя - в фиолетовый.

Достаточно редко над обычной радугой можно наблюдать еще и вторую радугу, в которой порядок цветов обратный: снаружи - фиолетовый, внутри - красный.

Можно приблизиться к радуге? Вряд ли это кому удастся, потому что радуга - это не предмет, а оптическое явление.

Попробуйте идти в сторону радуги, и вы увидите, что она будет отдаляться от вас так, что расстояние до нее будет казаться неизменной.

Впрочем, если разобраться в секрете радуги, то небольшую радугу можно «получить» или увидеть совсем близко - возле садового фонтана и даже в ванной комнате!

Почему же возникает радуга?

После дождя в воздухе остается много мельчайших капелек воды, имеющих форму шара.

Когда луч света падает на такую капельку, он преломляется на поверхности капельки, затем отражается от ее внутренней поверхности и, выходя из воды в воздух, преломляется еще раз1. Вследствие дисперсии лучи, соответствующие различным цветам, преломляются по-разному (рис. 23.6).

В результате, выйдя из капли, «красный» луч пойдет под одним углом к горизонту, а «фиолетовый» - под другим. Следовательно, в глаз наблюдателя «красный» и «фиолетовый» лучи попадут из разных капель (рис. 23.7). Причем все «красные» капли будут видны под одинаковым углом, в результате чего они будут казаться расположенными на дуге окружности. «Оранжевые» капли будет видно на «соседней» дуге меньшего радиуса и так далее - вплоть до капель, образующих «фиолетовую» дугу, расположенную ниже остальных «цветных» дуг.

СКОЛЬКО ЦВЕТОВ НА ЭКРАНЕ ТЕЛЕВИЗОРА?

ПРОВЕДЕМ ОПЫТ

Нанесите осторожно на экран телевизора капельку воды: она будет играть роль маленькой, но довольно сильной линзы. Сквозь эту линзу вы ясно увидите, что любое цветное изображение состоит из светящихся точек всего трех цветов - красных, зеленых и синих, то есть именно тех, к которым наиболее чувствительны колбочки сетчатки глаза.

Например, там, где на экране белый цвет, эти три точки будут иметь примерно одинаковую яркость. А там, где на экране видно желтый цвет, вы не увидите желтых точек: вы увидите только красные и зеленые точки - что согласуется с рассказанным выше о том, как глаз различает цвета.

1 Это только один из возможных «путей» луча света. Причиной двойной радуги является двойное отражение лучей света внутри капель воды.

Схематично смешение цветов на экране телевизора показано на рис. 23.8.

То, что для получения цветного изображения в телевизоре выбран именно те цвета, к которым чувствительны различные типы колбочек сетчатки глаза, не случайное совпадение, а результат успешного сотрудничества физиков и биологов.

Цвет, что создается в случае «изъятия» некоторого цвета из белого, называют доповняльним к этому цвету. Так, доповняльними друг к другу являются красный и зеленый цвета, желтый и фиолетовый, а также синий и оранжевый (рис. 23.9). Знать доповняльні цвета важно для художников и дизайнеров: благодаря использованию таких цветов можно создать сбалансированную, комфортную для глаза сочетание цветов.

ПОЧЕМУ ВЕЧЕРОМ ЦВЕТА ТУСКНЕЮТ?

Вы, наверное, замечали, что, когда наступают сумерки, яркие цвета «тускнеют» и мир становится «черно-бело-серым». Так что не случайно родилась пословица «ночью все кошки серые»!

Но как только взойдет солнце, утро снова радует нас яркими красками. Почему же так происходит?

Дело в том, что уже знакомые вам палочки, которые отличают темное от светлого, очень чувствительны к свету, а колбочки, которые различают цвет, гораздо менее чувствительны. Поэтому при слабом освещении «работают» преимущественно палочки. Вследствие этого мы и видим (в буквальном смысле этого слова!) результат их работы - черно-бело-серый мир.

СООТНОШЕНИЕ МЕЖДУ ЦВЕТОМ И ДЛИНОЙ СВЕТОВОЙ ВОЛНЫ

Как вы уже знаете, свет имеет волновую природу. Большую роль в установлении волновой природы света сыграл английский ученый Томас Юнг. Он установил, что каждому цвету соответствует определенная длина волны, причем фиолетовом цветные - наименьшая, а красном - самая большая.

Именно Юнг первым и вимірив длины волн, соответствующие различным цветам. Оказалось, что эти длины волн очень малы по сравнению с размерами предметов, видимых невооруженным глазом: так, длина волны фиолетового света составляет около 4 десятитысячных долей миллиметра, а красного - около 8 десятитысячных долей миллиметра.

Когда Юнг получил эти результаты, стало ясно, почему волновая природа света практически не проявляет себя в повседневной жизни.

  • Глава 01. Физика цвета
  • Глава 02. Цвет и цветовое воздействие
  • Глава 03. Цветовая гармония
  • Глава 04. Субъективное отношение к цвету
  • Глава 05. Цветовое конструирование
  • Глава 06. Двенадцатичастный цветовой круг
  • Глава 07. Семь типов цветовых контрастов
  • Глава 08. Контраст по цвету
  • Глава 09. Контраст светлого и темного
  • Глава 10. Контраст холодного и теплого
  • Глава 11. Контраст дополнительных цветов
  • Глава 12. Симультанный контраст
  • Глава 13. Контраст по насыщенности
  • Глава 14. Контраст по площади цветовых пятен
  • Глава 15. Смешение цветов
  • Глава 16.
  • Глава 17. Цветовые созвучия
  • Глава 18. Форма и цвет
  • Глава 19. Пространственное воздействие цвета
  • Глава 20. Теория цветовых впечатлений
  • Глава 21. Теория цветовой выразительности
  • Глава 22. Композиция
  • Послесловие
  • Физика цвета

    В 1676 году сэр Исаак Ньютон с помощью трехгранной призмы разложил белый солнечный свет на цветовой спектр. Подобный спектр содержал все цвета за исключением пурпурного.

    Ньютон ставил свой опыт следующим образом (рис. 1) солнечный свет пропускался через узкую щель и падал на призму. В призме луч белого цвета расслаивался на отдельные спектральные цвета. Разложенный таким образом он направлялся затем на экран, где возникало изображение спектра. Непрерывная цветная лента начиналась с красного цвета и через оранжевый, желтый, зеленый, синий кончалась фиолетовым. Если это изображение затем пропускалось через собирающую линзу, то соединение всех цветов вновь давало белый цвет.

    Эти цвета получаются из солнечного луча с помощью преломления. Существуют и другие физические пути образования цвета, например, связанные с процессами интерференции, дифракции, поляризации и флуоресценции.

    Если мы разделим спектр на две части, например - на красно-оранжево-желтую и зелено-сине-фиолетовую, и соберем каждую из этих групп специальной линзой, то в результате получим два смешанных цвета, смесь которых в свою очередь также даст нам белый цвет.

    Два цвета, объединение которых дает белый цвет, называются дополнительными цветами.

    Если мы удалим из спектра один цвет, например, зеленый, и посредством линзы соберем оставшиеся цвета - красный, оранжевый, желтый, синий и фиолетовый, - то полученный нами смешанный цвет окажется красным, то есть цветом дополнительным по отношению к удаленному нами зеленому. Если мы удалим желтый цвет, то оставшиеся цвета - красный, оранжевый, зеленый, синий и фиолетовый - дадут нам фиолетовый цвет, то есть цвет, дополнительный к желтому.

    Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра.

    В смешанном цвете мы не можем увидеть отдельные его составляющие. В этом отношении глаз отличается от музыкального уха, которое может выделить любой из звуков аккорда.

    Различные цвета создаются световыми волнами, которые представляют собой определенный род электромагнитной энергии.

    Человеческий глаз может воспринимать свет только при длине волн от 400 до 700 миллимикрон:

    • 1 микрон или 1μ = 1/1000 мм = 1/1000000 м.
    • 1 миллимикрон или 1mμ = 1/1000000 мм.

    Длина волн, соответствующая отдельным цветам спектра, и соответствующие частоты (число колебаний в секунду) для каждого спектрального цвета имеют следующие характеристики:

    Отношение частот красного и фиолетового цвета приблизительно равно 1:2, то есть такое же как в музыкальной октаве.

    Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознает эти волны до настоящего времени еще полностью неизвестно. Мы только знаем, что различные цвета возникают в результате количественных различий светочувствительности.

    Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, пропускающий красный цвет, и фильтр, пропускающий зеленый, перед дуговой лампой, то оба фильтра вместе дадут черный цвет или темноту. Красный цвет поглощает все лучи спектра, кроме лучей в том интервале, который отвечает красному цвету, а зеленый фильтр задерживает все цвета, кроме зеленого. Таким образом, не пропускается ни один луч, и мы получаем темноту. Поглощаемые в физическом эксперименте цвета называются также вычитаемыми.

    Цвет предметов возникает, главным образом, в процессе поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный.

    Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхности чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создается при ее освещении.

    Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зеленым светом, то бумага покажется нам черной, потому что зеленый цвет не содержит лучей, отвечающих красному цвету, которые могли быть отражены нашей бумагой.

    Все живописные краски являются пигментными или вещественными. Это впитывающие (поглощающие) краски, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета - желтый, красный и синий, - смешиваются в определенной пропорции, то результатом будет черный, в то время как аналогичная смесь невещественных цветов, полученных в ньютоновском эксперименте с призмой, дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычитания.

    Поглощение цвета

    Цвета, которые мы приписываем предметам, являются следствием воздействия отраженного ими излучения, достигающего наших глаз. При освещении белым светом красный кирпич кажется красным, поскольку он отражает излучение красной части спектра. Он может отражать значительную часть желтого и оранжевого, некоторую часть зеленого, немного фиолетового и даже синего излучения. Но большая часть синего, фиолетового и зеленого излучения будет поглощена. Можно точно измерить цветовое (спектральное) отражение и поглощение какой-либо поверхности. Любой цвет имеет свой спектральный состав, будь то искусственный краситель или естественная окраска. Два цвета, которые для глаза выглядят почти одинаковыми, вполне могут иметь совершенно разные спектральные составы.

    Стандартная испытательная таблица фирмы «Кодак» позволяет фотографу контролировать воспроизведение ярких и пастельных цветов, а также контраст и влияние цветных светофильтров.

    Чистые (яркие) цвета обычно являются следствием селективного (резко избирательного) поглощения и отражения. Они характерны для поверхностей, которые отражают почти все излучение с определенными длинами волн и поглощают остальное, как правило, обычным образом. Ненасыщенные (пастельные или бледные) цвета обусловлены меньшей селективностью; они характерны для поверхностей с малой поглощательной способностью, отражающих в широком диапазоне длин волн, с доминирующей ролью некоторых длин волн. Они подобны ярким цветам, смешанным с преобладающим количеством белого цвета.

    Приглушенные цвета являются следствием в целом низкой отражательной способности, когда поглощается излучение почти на всех длинах волн и лишь на некоторых отражается. Такие цвета можно рассматривать как некоторое подобие чистых цветов, смешанных с черным цветом. С точки зрения фотографии ни приглушенный, ни пастельный цвет невозможно превратить в яркий или насыщенный цвет. Цвет, с избытком насыщенный белым светом, может быть затемнен, тогда он превратится в приглушенную мрачную тень. Цвет с избытком нейтральной плотности(примесью «серого») можно сделать более светлым, но при этом он становится блеклой тенью. Имея дело с любым цветом, мы встречаемся с зеркальным отражением или поверхностным блеском в виде ослепительного свечения. Чистый насыщенный красный цвет может показаться бледно-розовым, если его имеет отполированный предмет, на который падает свет. Поверхностное отражение добавляет нежелательную примесь белого света.

    Сильное влияние оказывает также относительная освещенность. В тени цвет выглядит менее ярким, чем тот же цвет рядом при полном солнечном освещении. На фотографии для обоих случаев в отдельности можно добиться одинаковой цветовой насыщенности индивидуальным подбором экспозиции. Если же снимать сюжет, имеющий одновременно и света, и глубокие тени, то при передаче цвета придется отдать предпочтение одному из вариантов - либо светам, либо теням. Причиной того, что многие цветные поверхности выглядят менее яркими в пасмурные дни, является поверхностное отражение, а не уровень освещения. Облачное небо отражается, а полностью рассеянный свет дает полностью рассеянный блеск. Прямые солнечные лучи не вызывают блеска в большом диапазоне углов падения и не образуют ослепительного яркого пятна, если смотреть на поверхность «против света».

    Из книги Хедлайнеры автора Кушнир Александр

    8. Слияние и поглощение Если вдуматься, мы бесконечно занимаемся тем, что ждем других. Илья Лагутенко Спустя несколько дней после презентации “Меамуров” “Тролли” выехали в Киев – выступить на фестивале “Просто рок”. Так получилось, что Илья и музыканты ехали в одном

    Из книги Фотокомпозиция автора Дыко Лидия Павловна

    Изображение цвета С возникновением и развитием цветной фотографии перед мастерами советского фото встала проблема цветовой организации, цветового решения, колорита фотографического снимка.Понятие "колорит" пришло в фотографию из живописи, где этим термином

    Из книги По лабиринтам авангарда автора Турчин В С

    МАТИСС. МАСТЕР ЦВЕТА Живописная революция цвета длилась более полувека. Матисс простился с жизнью в 1954 г. Он многое дал людям; его светлое, жизнерадостное искусство свидетельствует, что авангард был разнообразен, мог не только пугать или уводить в лабиринты

    Из книги О духовном в искусстве автора Кандинский Василий Васильевич

    V. Движение цвета Скольжение нашего взора по покрытой красками палитре приводит к двум главным результатам: 1) осуществляется чиста физическое воздействие цвета, когда глаз очарован его красотой и другими его свойствами. Зритель испытывает чувство удовлетворения,

    Из книги Основы живописи [Учебник для уч. 5-8 кл.] автора Сокольникова Наталья Михайловна

    Из книги Черный квадрат автора Малевич Казимир Северинович

    Из книги Основы графического дизайна на базе компьютерных технологий автора Яцюк Ольга Григорьевна

    Из книги Матисс автора Эсколье Раймон

    Из книги Сокровища Рифейских гор автора Ленковская Елена

    Ось цвета и объема* Приступая к организации и реорганизации общей художественной строительной машины в Государстве, было обращено внимание на создание сети музеев как центров пропаганды и просвещения широких народных масс.До сих пор старое музееведение, хотя и было

    Из книги Кто есть кто в мире искусства автора Ситников Виталий Павлович

    Глава 2 Искусство цвета Восприятие изображения в значительной мере определяется цветом. Цвет делает изображение более выразительным, передает настроение, обостряет восприятие, придает форме особую значимость и одухотворенность.На человека постоянно влияет цветовая

    Из книги автора

    2.1. Значение цвета в изобразительном искусстве Мир прекрасен, потому что человек воспринимает его в цвете. Обратите внимание, как похожи слова «прекрасный» и «красочный».Поиск особого цветового решения – один из главных вопросов, стоящих перед художником. Любое

    Из книги автора

    2.2. Природа цвета Цвет – очень сложное явление. Существует несколько совершенно различных подходов к его изучению.Физики исследуют энергию электромагнитных колебаний, измеряют длину цветовой волны, проводят анализ спектра.Химики работают с красителями, изучают их

    Из книги автора

    2.8. Эмоциональное воздействие цвета Восприятие цвета субъективно. Цветовую характеристику можно дать любому явлению природы, запаху, вкусу, звуку. Чем более развита у художника «чувствительность» к цвету, тем более точно будут выполнены им любые цветовые композиции.

    Из книги автора

    Из книги автора

    Какого цвета чугун? Попробуй-ка, догадайся! Уральские дети обычно отвечают - чёрного. Ты тоже так думаешь, вспомнив бабушкину любимую сковородку, затесавшуюся на кухне среди нарядных тефлоновых подруг? Нет, друг мой, сковородка эта чёрная не сама по себе. Она просто

    Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение - это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

    Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

    На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр . Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет - всего лишь звено одной очень длинной электромагнитной волны.

    От света к цвету и обратно

    Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет - луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) - это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

    Рисунок 2 – Прохождение луча солнечного света через призму.

    Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

    Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

    Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

    Проверим как это работает на практике. Возьмем 3 источника света (прожектора) - красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

    Рисунок 3 - Результат наложения красного, зеленого и синего цветов.

    Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный - пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света - там мрак, там всё становится черным. Пример тому - иллюстрация 4.

    Рисунок 4 – Отсутствие светового излучения

    Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

    Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

    Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

    Цветовой тон (hue)

    – Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

    Яркость (Brightness)

    – Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии - нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный - алый - бордовый - бурый - черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

    Светлость (Lightness)

    – Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный - малиновый - розовый - бледно-розовый - белый.

    Насыщенность (Saturation)

    – Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

    Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

    Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

    Рисунок 7 – Палитра цветов Adobe Photoshop

    Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% - это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) - это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 - это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах , в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
    На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
    Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

    Цвет объектов

    Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

    Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет . А когда объект отражает почти весь падающий свет, он принимает белый цвет . Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света , которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря - физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

    Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

    - Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

    - Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

    - И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

    Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

    Рисунок 8 – Отражение зеленой волны спектра

    Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

    Рисунок 9 – Отражение желтой волны спектра

    Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

    Рисунок 10 – Отражение всех волн спектра

    Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

    В следующей статье речь пойдет о новой характеристике цвета -