Схемы автомобильных маяков на лампе. Как сделать мигающий светодиод

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы

Мигалка состоит из следующих элементов:
  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.
Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
Далее мигалка работает в циклическом режиме и все процессы повторяются.

Необходимые материалы и радиодетали

Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).


Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки

Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.




Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.



Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.

Бывают ситуации, когда нужна схема маячка, который создавал бы вспышки действительно яркие и заметные, например, на служебный автомобиль или походный фонарь.

Выше изображена схема такого маячка, который вспыхивает, создавая эффект стробоскопа.

Питается схема от источника питания не ниже 10 вольт. Для уменьшения рабочего напряжения можно поменять транзисторы VT1 и VT2 на транзисторы с наиболее низким по напряжению КЭ переходом. А также подогнав номиналы резисторов R1 и R2.

Резисторами R3 и R4 регулируют вспышки, если увеличить номиналы резисторов до 100 Ом, светодиоды будут загораться плавно. Благодаря резисторам номиналом 1 Ом, светодиоды вспыхивают быстро, в связи с чем и создается эффект стробоскопа.

Конденсаторами C1 и C2 регулируют частоту вспышек светодиодов VD1 и VD2. Уменьшая емкость конденсаторов можно увеличить скорость вспышек.
Светодиоды желательно ставить более яркие с большей силой свечения.
Как видно по схеме устройство состоит из двух аналогичных блоков, первый блок состоит из резисторов R1 и R3, конденсатора C1, транзистора VT1 и светодиода VD1. Остальные детали относятся ко второму блоку. Составляя дополнительные блоки можно увеличить число маячков.

Обратите внимание на базы транзисторов VT1 и VT2, они не подключены, это не ошибка, да действительно базы транзисторов в устройстве не подключаются!

Устройство было смонтировано на печатной плате, плата была вставлена в корпус от реле, далее было протестировано и установлено на служебный автомобиль «Нива» на место штатных габаритов, в каждую фару было установлено по три светодиода. Устройство работает успешно уже второй год, компоненты не греются, сбоев в работе не зафиксировано.

Устройство разработано больше года назад, по просьбе товарища, на основе данных взятых в Интернете из открытых источников.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

КТ315Б

2 С любым буквенным индексом В блокнот
С1, С2 Электролитический конденсатор 1000 мкФ 16 В 2 В блокнот
R1, R2 Резистор

1 кОм

2 В блокнот
R3, R4 Резистор

1 Ом

2 В блокнот
VD1, VD2 Светодиод 2

Мастер раскрывает секрет простой светодиодной мигалки со звуком, построенной своими руками на основе электроники от сломанных электронно-механических часов.

Как сделать мигалку со звуком своими руками

Для работы необходим механизм от электронно-механических часов с тикающим ходом. Подойдет и сломанный механизм, так как неисправность на 99% связана с повреждением механики. Обратите внимание, что механизм с плавным ходом для поделки не подходит. Отличить механизмы просто, если внимательно посмотреть на фотографии, то под корпусом тикающих часов хорошо заметно 3 больших шестеренки, а вот под корпусом механизма плавного хода присутствует четыре шестеренки. Процесс извлечения платы электроники хорошо показан на видео. Далее работу со схемой необходимо провести по следующей инструкции:

1. Извлекаем своими руками всю механику и откладываем ее в сторону. Провода от катушки можно оборвать.

2. Помечаем на плате полярность клемм питания. Аккуратно поддеваем плату электроники и извлекаем ее.

Механизм тикающего хода

3. Залуживаем припоем контактные площадки. Делать это надо быстро и аккуратно. Площадки при перегреве легко отслаиваются и потом обрываются.

4. Припаиваем проводники питания. Микросхема часов будет работать при подаче напряжения от 1,5 до 5 Вольт.

5. Припаиваем к плате звуковой излучатель типа TR1203 и любой светодиод в зависимости для каких целей вы хотите использовать полученную схему. Смотрите видео и фото схемы мигалки. Мигалка будет работать и каждую секунду должна моргать светодиодом, а затем пикать. Этим схема пожалуй и отличается от всех подобных мигалок пикалок. Можно подключить к схеме два светодиода и они будут последовательно и поочередно вспыхивать, чем не готовый контроллер для летающих моделей копий самолетов?


Светодиодный маяк схема на таймере КР1006ВИ1

Эту конструкцию, а точнее его схему можно назвать простой и доступной. Устройство работает на основе таймера КР1006ВИ1, имеющего два прецизионных компаратора. кроме того в устройство, входят времязадающий оксидный конденсатор С1, делитель напряжения на сопротивлениях R1 и R2. С третьего выхода микросхемы DA1 управляющие импульсы следуют на светодиоды HL1-HL3.

Включение схемы осуществляется с помощью тумблера SB1. В начальный момент времени на выходе таймера высокий уровень напряжения и светодиоды светятся. Емкость С1 начинает заряжаться через цепь R1 R2. Спустя одну секунду, время можно регулировать сопротивлениями R1 R2 и конденсатором С1, напряжение на обкладках конденсатора достигает величины срабатывания одного из компараторов. При этом напряжение на выводе три DA1 будет нулевым, светодиоды потухнут. Так продолжается из цикла в цикл, пока на радиолюбительскую конструкцию подано напряжение.

Рекомендуется использовать в конструкции мощные светодиоды HPWS-T400 или аналогичные им с током потребления не выше 80 мА. Можно использовать и один светодиод, например LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01.

Найти в темное время различные предметы или, например, домашних животных, станет проще, если на них закрепить нашу радиолюбительскую разработку, которая с наступлением темноты автоматически включится и начнет подавать световой сигнал.

Это обычный несимметричный мультивибратор на биполярных транзисторах разной проводимости VT2, VT3, который генерирует короткие импульсы с интервалом в пару секунд. Источником света является мощный светодиод HL1, датчиком освещенности является фототранзистор.

Фототранзистор с сопротивлениями R1, R2 образует делитель напряжения в базовой цепи транзистора VT2. В светлое время суток напряжение на эмиттерном переходе транзистора VT2 низкое, и он заперт вместе со своим коллегой VT3. С наступлением темноты транзисторы начинают работать в режиме генерации импульсов от которых вспыхивает и светодиод

Проблесковые маячки применяются в электронных охранных домовых системах и на автомобилях как устройства индикации, сигнализации и предупреждения. Причем их внешний вид и "начинка" часто совсем не отличаются от проблесковых маячков (спецсигналов) аварийных и оперативных служб.

В продаже имеются классические маячки, но их внутренняя "начинка" поражает своим анахронизмом: изготовлены они на основе мощных ламп с вращающимся патроном (классика жанра) или ламп типа ИФК-120, ИФКМ-120 со стробоскопическим устройством, обеспечивающим вспышки через равные промежутки времени (импульсные маячки). А между тем на дворе XXI век, когда наблюдается триумфальное шествие очень ярких (мощных по световому потоку) светодиодов.

Одним из основополагающих моментов в пользу замены ламп накаливания и галогенных ламп светодиодами, в частности в проблесковых маячках, являются больший ресурс (срок безотказной работы) и меньшая стоимость последних.

Кристалл светодиода практически "неубиваем", поэтому ресурс прибора определяет в основном долговечность оптического элемента. Подавляющее большинство производителей применяют для его изготовления различные комбинации эпоксидных смол, разумеется, с различной степенью очистки. В частности, из-за этого светодиоды имеют ограниченный ресурс, по истечении которого они мутнеют.

Разные производители (не будем их бесплатно рекламировать) заявляют ресурс своих светодиодов от 20 до 100 тысяч (!) часов. В последнюю цифру мне слабо верится, потому что светодиод должен работать непрерывно 12 лет. За это время пожелтеет даже бумага, на которой отпечатана статья.

Однако, в любом случае, по сравнению с ресурсом традиционных ламп накаливания (менее 1000 часов) и газоразрядных ламп (до 5000 часов), светодиоды на несколько порядков долговечнее. Совершенно очевидно, что залогом большого ресурса является обеспечение благоприятного теплового режима и стабильного питания светодиодов.

Преобладание светодиодов с мощным световым потоком 20 - 100 лм (люменов) в новейших электронных устройствах промышленного изготовления, в которых они работают вместо ламп накаливания, дает основание и радиолюбителям применять такие светодиоды в своих конструкциях. Таким образом, я подвожу читателя к мысли о возможности замены в аварийных и специальных маячках различных ламп мощными светодиодами. При этом ток потребления устройством от источника питания уменьшится и будет зависеть в основном от примененного светодиода. Для использования в автомобиле (в качестве спецсигнала, аварийного светового указателя и даже "знака аварийной остановки" на дорогах) ток потребления непринципиален, поскольку аккумуляторная батарея (АКБ) автомобиля имеет достаточно большую энергоемкость (55 и более Ач и более). Если же маячок питается от автономного источника, то ток потребления установленного внутри оборудования будет иметь немаловажное значение. Кстати, и АКБ автомобиля без подзарядки может разрядиться при длительной работе маячка.

Так, например, "классический" маячок оперативных и аварийных служб (синий, красный, оранжевый - соответственно) при питании от источника постоянного напряжения 12 В потребляет ток более 2,2 А, который складывается из потребляемого электродвигателем (вращающим патрон) и самой лампой. При работе проблескового импульсного маячка ток потребления снижается до 0,9 А. Если же вместо импульсной схемы собрать светодиодную (об этом ниже), ток потребления сократится до 300 мА (зависит от мощности примененных светодиодов). Экономия в стоимости деталей также ощутима.

Конечно, не изучен вопрос о силе света (или, лучше сказать, его интенсивности) от тех или иных проблесковых устройств, поскольку автор не имел и не имеет специальной аппаратуры (люксометра) для такого теста. Но в силу новаторских решений, предложенных ниже, данный вопрос становится второстепенным. Ведь даже относительно слабые световые импульсы (в частности от светодиодов), пропущенные сквозь призму неоднородного стекла колпачка маячка в ночное время более чем достаточны для того, чтобы маячок заметили за несколько сотен метров. Именно в этом смысл дальнего предупреждения, не правда, ли?

Теперь рассмотрим электрическую схему "заменителя лампы" проблескового маячка (рис. 1).


Рис. 1. Принципиальная электрическая схема светодиодного маяка

Эту электрическую схему мультивибратора можно с полным правом назвать простой и доступной. Устройство разработано на основе популярного интегрального таймера КР1006ВИ1, содержащего два прецизионных компаратора, обеспечивающих погрешность сравнения напряжений не хуже ±1%. Таймер неоднократно использовался радиолюбителями для построения таких популярных схем и устройств, как реле времени, мультивибраторы, преобразователи, сигнализаторы, устройства сравнения напряжения и другие.

В состав устройства, кроме интегрального таймера DA1 (многофункциональная микросхема КР1006ВИ1), входят еще времязадающий оксидный конденсатор С1, делитель напряжения R1R2. С3 выхода микросхемы DA1 (ток до 250 мА) управляющие импульсы поступают на светодиоды HL1-HL3.

Принцип работы устройства

Включение маячка осуществляется с помощью включателя SB1. Принцип работы мультивибратора подробно описан в литературе.

В первый момент на выводе 3 микросхемы DA1 высокий уровень напряжения - и светодиоды горят. Оксидный конденсатор С1 начинает заряжаться через цепь R1R2.

Спустя примерно одну секунду (время зависит от сопротивления делителя напряжения R1R2 и емкости конденсатора С1 напряжение на обкладках этого конденсатора достигает величины, необходимой для срабатывания одного из компараторов в едином корпусе микросхемы DA1. При этом напряжение на выводе 3 микросхемы DA1 устанавливается равным нулю - и светодиоды гаснут. Так продолжается циклически, пока на устройство подано напряжение питания.

Кроме указанных на схеме, в качестве HL1-HL3 рекомендую использовать мощные светодиоды HPWS-T400 или аналогичные с током потребления до 80 мА. Можно применять и только один светодиод из серий LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01,

LXHL-MH1D производства Lumileds Lighting (все - оранжевого и краснооранжевого цвета свечения).

Напряжение питания устройства можно довести до 14,5 В, тогда его можно подключать в бортовую автомобильную сеть даже при работающем двигателе (а точнее - генераторе).

Особенности конструкции

Плата с тремя светодиодами устанавливается в корпус проблескового маячка вместо "тяжеловесной" штатной конструкции (лампы с вращающимся патроном и электродвигателем).

Для того чтобы выходной каскад обладал еще большей мощностью, потребуется установить в точку А (рис. 1) усилитель тока на транзисторе VT1 так, как это показано на рисунке 2.


Рис. 2. Схема подключения дополнительного усилительного каскада

После подобной доработки можно применять по три параллельно включенных светодиода типов LXHL-PL09, LXHL-LL3C (1400 мА),

UE-HR803RO (700 мА), LY-W57B (400 мА) - все оранжевого цвета. При этом общий ток потребления соответственно увеличится.

Вариант с лампой-вспышкой

У кого сохранились детали фотоаппаратов со встроенной вспышкой, тот может пойти и другим путем. Для этого старую лампу-вспышку демонтируют и подключают в схему так, как показано на рисунке 3. С помощью представленного преобразователя, подключаемого также в точку А (рис. 1), на выходе устройства с низким напряжением питания получают импульсы амплитудой 200 В. Напряжение питания в данном случае однозначно увеличивают до 12 В.

Выходное импульсное напряжение можно увеличить, включив в цепь несколько стабилитронов по примеру VТ1 (рис. 3). Это кремниевые планарные стабилитроны, предназначенные для стабилизации напряжения в цепях постоянного тока с минимальным его значением 1 мА и мощностью до 1 Вт. Вместо указанных на схеме можно применить стабилитроны КС591А.


Рис. 3. Схема подключения лампы-вспышки

Элементы С1, R3 (рис.2) составляют демпфирующую RС-цепочку, гасящую высокочастотные колебания.

Теперь с появлением (в такт) импульсов в точке А (рис. 2) будет включаться лампа-вспышка ЕL1. Встроенная в корпус проблескового маячка данная конструкция позволит применять его и далее, если штатный маячок вышел из строя.


Плата со светодиодами, устанавливаемая в штатный корпус проблескового маячка

К сожалению, ресурс лампы-вспышки от портативного фотоаппарата ограничен и едва ли превысит 50 часов работы в импульсном режиме.

Смотрите другие статьи раздела .